Sailing craft for a post-collapse world

Dmitry Orlov

Land transport will be costly, difficult and dangerous after the industrial system has broken down. Moving goods and people by water will be a better option even for quite short distances but what sort of boats will be needed and what materials will be available to build them?

At present, whether you need to move around yourself, or whether everything you need is delivered straight to your door, you depend for transport on industrial products whether they be cars and lorries, planes, trains, ships, bicycles, or even just a good pair of shoes. Is any means of transport available that you could provide, build or even service yourself that does not require access to industrial materials, products or services?

Even human bipedal locomotion has been industrialised: just to get from the bedroom to the bathroom you might want to put on slippers, and they probably say “Made in China” on them. They were made in a large factory, and were brought to you on an even larger container ship. Few of us know any cobblers who live within walking distance, whereas, were the global industrial economy to unravel, bipedal locomotion would become, pardon the pun, our sole recourse. It is an old experimentalist tradition to try experiments on oneself, and so, as an experiment, I spent a few months going about barefoot. I found it quite possible, reasonably safe, and even perfectly pleasant, in the warmer seasons and climates, following a few weeks of somewhat uncomfortable adaptation. But that’s a minor matter; my other, more ambitious experiments have made me quite optimistic regarding one’s ability to cover huge distances and generally move about the planet, even after jet aircraft, container ships and other leviathans of industrial civilisation go off to join the dinosaurs. Provided, that is, that one makes some timely preparations.

A Thames barge, a traditional 80ft shoal-draft craft designed for estuaries and coastal waters, could carry large amounts of cargo and be sailed by a man and a boy. Photo: Steve Birch.

Although a complete and instantaneous collapse of global industry doesn’t seem particularly likely just at this very moment, its likelihood begins to approach 100 per cent as we move through the 21st Century. The opposing view – that industrial civilisation can survive this century – comes up rather short of facts to support it and rests on an unshakable faith in technological miracles. In an echo of medieval alchemy, the hopes for technological salvation are pinned on some element or other: yesterday it was hydrogen; today it’s thorium. Fusion reactors are currently out of fashion, cold fusion doubly so, but who knows what new grand proposal tomorrow will bring?

In the meantime, we have far more mundane problems to consider. We’ve had ample chance to observe that when key supplies run short, industrial economies crumble. Throughout their relatively short history, industrial economies have tended to do well as they were given more and more of everything they needed (energy, raw materials, fresh water, land, cheap/free labour and so forth). There are no examples of industrial economies surviving chronic shortfalls of key commodities — especially ones that have no readily available substitutes. Quite the opposite: we have the stunning example of the USSR, where the peak in domestic crude oil production precipitated a financial collapse and a political dissolution just a few years later, events which were followed by a severe and prolonged economic decline. It was only by integrating with the global economy, which had plentiful resources at the time, that the Russian economy was able to recover. No such rescues will be available when the shortfalls become global.

We also have the example of the current Great Recession, which occurred as soon as the global economy encountered a physical limit to oil production. These events are like canaries in a coal mine, because over the course of the century the global industrial economy is destined to encounter not just global peak oil, but peak just about everything else it runs on: coal, natural gas, iron ore, strategic metals and minerals – in short, just about everything that industry requires to maintain itself and to grow. Since most footwear is now made of polymers, which are synthesised from oil and natural gas, we are also likely to pass peak shoes. Such facts can now be gleaned from a number of authoritative reports published by international and governmental agencies.

Why, then, don’t these facts inform the discussion on the future of transport? If one were to assemble a panel of professionals and experts on transport technology and ask them to propose transport solutions that could continue to operate for the remainder of this century, one would no doubt hear of various high-tech products – electric cars, light rail, high-speed trains, hydrogen fuel cells, plug-in hybrids and so on. These would enable our contemporary, industrialized society to perpetuate its current lifestyle, and everyone to keep their jobs. That’s all well and good, but as a follow-up question one might wish to inquire as to how their plans will be impacted by a variety of factors, some of which are already present, some certain to happen at some point during this century, with only the exact timing in dispute. The list of such factors might reasonably include:

  1. The inability to supply/afford transport fuels in the amounts needed to run existing transportation networks, construction and industrial equipment. Transport fuels are made almost entirely from oil, and global oil production has probably already entered terminal decline. Since coal and natural gas are set to follow within the next 15 years, they can scarcely provide substitutes. Renewable energy sources such as solar, wind or biomass either do not provide transportation fuels or provide them in comparatively tiny quantities.
  2. A lack of the resources required to build new transportation infrastructure due to a permanent and deepening economic depression. Economies that fail to grow, or grow more slowly than the population, would not produce a surplus sufficient to maintain their existing infrastructure and vehicle fleets, never mind investing in ambitious new schemes.
  3. Shortages of strategic metals and key rare earth elements needed to manufacture high-technology components such as electric vehicle batteries, photovoltaic panels and high-efficiency electric motors.
    These are mined predominantly in China and are only available in restricted quantities.
  4. Social disruptions and political upheavals caused by population pressures in the face of a shrinking economy. These are unpredictable but would predictably result in disruptions to global supply chains, shortages of parts, and project delays and cancellations.
  5. Disruption of ocean freight once rising ocean levels begin to inundate port facilities. The current authoritative worst-case estimates are for a 1.5 metre sea level rise this century, but it is based on incomplete understanding of global warming effects and dynamics of polar ice cap melt. As knowledge improves, the estimates tend to double every few years, but they have not been keeping up with observed reality. The ultimate sea level rise may be as high as 20 metres.

In response, one would no doubt hear that solving such problems is outside of the area of expertise of transport technology professionals. Transport might be able to overcome some combination of such external problems, given enough time and money. For instance, a way might be found to manufacture high-technology components without using the rare earth elements in short supply. Or, if rising sea levels inundate ocean freight terminals, then, clearly, the terminals would have to be re-built again and again. However, if the resources were not available for such an ambitious and ultimately futile undertaking, then that would be regarded not as a technological but as a financial or even a political problem. Working one’s way up the technological food chain from the transport sector to the energy sector, one finds that energy professionals always blame production shortfalls and high prices on lack of sufficient investment. Why do they always say that the problems they face are not physical but economic? Economists, in turn, are perfectly content to ignore physical realities and treat all problems as problems of economic policy.

And so it would appear that the overall working assumption of every specialist, expert and professional in every discipline is ceteris paribus – all other things being equal. They will work just on those problems on which they are qualified to work, provided that sufficient research and development funds, materials and facilities are made available to them. They would prefer to assume that future demand patterns will be much like the present ones: to-be-developed electric cars and light rail lines would be used to convey commuters to and from their jobs and consumers to and from nearby businesses and shopping centres. It must be inconceivable to them that this equipment would be idled while the former commuters and shoppers, bankrupted by wasteful and ineffective investments in technology, would be forced to spread out across the rural landscape in search of hand-to-mouth sustenance. They would no doubt prefer to think that their profession will continue to exist and have relevance: jobs will lead to pensions, graduate students will grow up to be post-doctoral students and hope to become junior faculty members some day, grant money will continue to flow, conferences will be organised and peer-reviewed journals will be published. In every field of research, from oil field analysis to climatology, no matter how conclusively morbid the results, more research will always be needed. But won’t the sort of disruption we are going to encounter deal the coup de grace to the industrial-scientific establishment? This perfectly reasonable question is answered either with quiet despondency or with entirely unjustified accusations of defeatism or extremism. Such emotional responses are woefully unprofessional; we can and must do better.

One approach to doing better seems to have already exhausted its possibilities. A branch of science known as systems theory was once seen as a way to de-compartmentalise thinking and to formulate interdisciplinary solutions to the problems of large, complex systems. An echo of that approach can still be heard in some of the current thinking on climate science, which attempts to leverage conclusions based on observations and climate models to formulate international public policies to reduce global greenhouse gas emissions. Experience with both the Kyoto Treaty and the more recent failure to agree a Copenhagen Treaty has laid bare a critical flaw in such thinking: it confuses knowledge with power.

The ability to analyse a complex system does not in any way imply an ability to influence it. Scientists appear, as a group, to be naïve about politics, and are misled into accepting as fact a fiction of control perpetuated by politicians and industry and business leaders, who find it useful to pretend that they possess the power to alter systems over which they merely preside. Be it the fossil fuel industry, or mining and manufacturing, or industrial agriculture, or the weapons industry, or the automotive industry – all of these can be modelled as machines lacking an “off” switch. Yet each one requires energy, raw materials, and financial and social stability and can only continue to operate as long as these needs continue to be met, after which point they undergo systemic breakdowns and cascaded failure. Although an analysis based on systems theory cannot do anything to prevent them, perhaps it can offer valuable insights into how long these systems should be expected to continue functioning, or provide some detail on how their demise will unfold.

If we are willing to concede that the global industrial economy will not last through the 21st century, then, while it is still possible, we can put together technologies and designs appropriate for the post-industrial age, and set in motion forward-looking projects with the goal of creating enough momentum, in the form of strong local traditions, institutions, practices and skills, to carry them through periods of economic disruption and political dissolution. Future generations will have to learn to make do with much less of everything, and with much less research and development in particular. Working in the twilight years of the industrial era, we could offer them a great service by leaving behind a few designs that they will actually be able to build and use.

In particular, post-industrial transport is a subject that until now has been quite neglected. Quite a lot has already been done to elucidate some of the available options for post-industrial construction, agriculture, medicine and other areas. Yet the ability to travel, on foot or otherwise, is the Achilles’ heel of our ability to implement solutions in any other area: innovation and diffusion of new practices, technologies and ideas is bound to come to a near-standstill without the ability to move materials and people. Without long-distance transport, long-distance communication is bound to break down as well, and the current unified view of the planet and of humanity will dissolve. Unlike other components of the industrial life support system, industrial transport systems have no post-industrial back-ups worth mentioning. Post-industrial agriculture has its organic and permaculture alternatives, post-industrial architecture its passive solar, cob, straw bale, rammed earth and round timber alternatives, post-industrial medicine its traditional Chinese medicine and other alternative medical traditions and practices, but when it comes to transport there do not appear to be any presently available post-industrial alternatives beyond horses and our very own scantily shod feet.

Our contemporary transport systems are almost entirely dependent on refined petroleum products for both the maintenance of transport infrastructure and most of the actual movement of passengers and freight. It took decades to phase in large-scale transport technologies such as coal-fired steam engines or marine diesels. Moreover, these transitions could only have taken place in the context of an expanding economy and resource base, and with the older modes of transport still functioning. Thus, it seems outlandish to imagine that a gradual, non-disruptive transition to alternative transport technologies might still be possible. A resilient plan should be able to survive an almost complete shut-down and provide for bootstrapping to an entirely new mode, within a new set of physical limits. Take away petroleum, and none of the contemporary industrial transport systems remain functional. Even electric rail or electric cars, or even bicycles, which do not use petroleum directly, require an intact industrial economy that runs on fossil fuels, and on petroleum-based fuels for the delivery of spare parts and infrastructure maintenance. The current global recession and trends in the global oil market make it possible to sketch out how a Great Stranding will occur: transport fuels may still be plentiful in theory, but in practice they will become unaffordable, and therefore unavailable, to much of the population.

Two factors play a key role. The first is the maximum price that consumers can pay. Beyond this price, demand is destroyed and the recession deepens. Each time this price is reached, a great deal of wealth is destroyed as well, and when subsequently a partial recovery occurs, consumers are poorer, and the maximum price they can pay is lower. Thus the maximum price decreases over time. The second factor is the minimum price that oil producers can charge, as determined by their production costs, which rise over time as easy-to-produce resources become depleted. Beyond putting a floor under prices, this trend cannot continue past a physical limit: as the easy-to-exploit resources are depleted, a point is reached when the resources that are left, though they may yet be plentiful, cannot be produced profitably at any price, because the amount of energy required to do so would exceed the amount of energy they would yield. Thus the minimum price increases over time.

Although an argument can be made that this trend can be offset to some extent by developing alternative energy sources, such as solar, wind, nuclear or biomass, a careful study of this question reveals that the net energy yield of alternative energies is, in all, rather poor, that the overall potential quantity of energy delivered by the alternatives is rather low, and that the massive financial investment that would be necessary to exploit them is increasingly unlikely. Most significantly, while individual countries may find solutions, there are simply no alternative sources of transport fuels in the quantities required globally for current systems to continue functioning, nor are there resources available to replace existing systems with anything else on a similar scale.

Thus we have two trend lines: a falling maximum price that consumers can afford, and a rising minimum price that producers have to charge. When the two lines cross, production shuts down. Since there is finer structure to both the supply and the demand, this is likely to happen in stages. On the demand destruction side, consumers can forgo holiday airline trips; they can stop driving cars and switch to walking or bicycling; they can heat just one room of the house; they can go back to the older tradition of the weekly splash in the tub (whether they need one or not) in place of the daily hot shower. This will allow them to make do with far less energy, and to sustain much higher energy prices. In turn, energy producers can cut their costs by producing less and closing wells or mines that are expensive to operate.

As the oil industry shuts down, maintenance requirements for roadways and bridges, sea ports and other infrastructure will no longer be met, while the price of transport services will come to exceed what businesses and consumers can afford to pay. There are already signs that we are in the early stages of such a slow-motion train-wreck. In 2009 the northernmost State of Maine could no longer afford to continue maintaining many of its paved rural roadways, which were being allowed to revert to dirt. At the opposite end of the transport spectrum, global airline travel had begun to decline, with most airlines reporting losses, and with air traffic still expanding only in the oil-rich Persian Gulf region. Such a gradual winding down of the industrial economy will leave little room for many non-essential activities, such as safety and efficiency upgrades, infrastructure maintenance, fleet replacement, and research and development. We can expect priority to be given to keeping existing equipment in running order by cannibalising and reusing parts as fewer and fewer vehicles remain in use. As this happens, safety and reliability will suffer, with many more cancellations and accidents, and cargoes being lost due to spoilage.

One can reasonably imagine that certain internal combustion vehicles will stay in sporadic use longer than others. For instance, limousines for weddings and hearses for funerals will perhaps remain motorised the longest, moving slowly over unpaved roads, since people would still be willing to pay extra for dignity on special occasions. We can also foresee that certain groups, such as governments, mafias, armed gangs and other social predators will be able to secure a supply of fuel the longest.

It is difficult to imagine that such a winding-down can happen uniformly, smoothly and peaceably. Inevitably, geography will be the determining factor: remote population centres, to which fuel must be brought overland, will have their supply curtailed long before those that are close to pipelines, railway lines, seaports or shipping channels. In communities that find themselves without access to transport fuels, much of the remaining economic activity will centre round gathering the necessary resources to escape, and they will steadily depopulate. Only the old and the sick will be left behind.

To see where this process might eventually lead – if we are lucky – it is helpful to look at pre-industrial settlement and transport patterns. After all, industrial, fossil fuel-powered transport has existed for just a blink of an eye in the long history of global trade and migration. By the time the fossil-fuel age arrived, the vast majority of the planet’s surface was already explored and settled. People moved about on foot, on horseback, by boat and by sailing ship, and these are the transport modes to which humanity will return once the fossil fuel-driven episode is over.

Transport costs can be grouped into two categories. The first is energy cost, encompassing consumables such as fuel, food and fodder, as well as the energy embodied in the equipment used – draft and pack animals, carts, boats, ships and so on. The second is cost of predation, which includes tributes, bribes, taxes, tariffs, duties and tolls, some officially sanctioned, some criminal. Efforts to avoid predation, by choosing pack animals over draft animals, or by taking detours to avoid toll roads, or by fording rivers instead of paying tolls at bridges, or by sailing random courses instead of following sea-lanes, or by sailing smaller vessels so as to pose a smaller, less desirable target, or by travelling in armed convoys to dissuade would-be robbers, and so on, form a grey area between the two. The upper limit on the amount of transport that is feasible is limited by the sum of the two costs. There is also a trade-off between the two: higher energy efficiency allows for more and fatter prey, and, in due course, for more and fatter predators. On the other hand, successful efforts at avoiding predation may increase energy costs but lower predation costs, resulting in greater overall efficiency and a larger volume of cargo that actually reaches its destination. In this case, greater resilience is achieved by “wasting” energy on predation avoidance rather than by striving to be maximally energy-efficient while inadvertently maximising the level of predation.

For some cargoes in the past, the cost of predation as a result of official tolls and unofficial tributes collected along the way could double the goods’ final price. Tolls were collected along inland waterways and at bridges and river crossings on major roadways. In more remote areas, and especially near mountain passes, brigandage was widespread. Often the only distinction between official and unofficial predation was that the former was sanctioned by the local aristocracy.

For bulk commodities, the energy cost of transport imposes hard limits on the maximum distance that is feasible. For instance, if the product is hay, and the mules pulling the cart eat half of it by the time they reach their destination, then either the trip was futile, or the mules would have nothing to eat on the way back. The energy value of the cargo also imposes an upper limit on the level of predation that is sustainable; if the limit was exceeded frequently, the predators would deplete their prey. Since moving bulk goods by barge is more energy efficient, canals could charge higher and more frequent tolls than toll roads. But the ease with which tolls could be collected along canals often led to abuses by rapacious local officials, forcing canal traffic back onto the less energy-efficient roads and depressing the overall level of trade.

Wheeled vehicles were used for local transport of bulk goods (hay, firewood, grain and other bulk commodities) but not for long-distance transport, which relied on caravans of pack animals. Energy considerations made long-distance overland transport impractical for bulk commodities, restricting it to high-priced items, such as specie (gold and silver), works of art and craftsmanship such as porcelain and cloth, and spices and medicinals. For such high-priced goods, transport costs represented a much smaller fraction of their final price, making avoidance of predation far more important than conserving energy. Wheeled vehicles make predation avoidance more difficult, because they have to use roads and bridges, whereas pack animals can use footpaths, steep mountain passes, dry riverbeds, and can ford rivers and streams. Unlike wheeled vehicles, pack animals can be pulled off the road and hidden by making them lie down behind vegetation, to avoid confrontations with both highwaymen and local officials.

Overland transport is orders of magnitude less energy-efficient than water transport. Before the advent of railways and coal-fired steam locomotives, it cost more to move freight a few kilometres overland than it did to ship it across the ocean by sail. The fortunes of coastal cities were determined by the quality of their harbours. In the New World, cities such as New York, Boston, Charleston and San Francisco became transport hubs because of the large numbers of ocean-going vessels their harbours could easily and safely accommodate. Inland transport relied on navigable rivers and canals, making use of wind and tide to move cargo as far as possible up tidal estuaries. Where wind and currents were unfavourable or unavailable, propulsion had to be provided by draft animals (including imprisoned or enslaved humans) either rowing or pulling the vessel from the towpath. For this reason, inland cities were often built in tidal estuaries at the uppermost reach of the tides and along rivers, lakes and canals.

Coal never fully supplanted sail either in coastal freight or on the high seas, and it was not until the widespread adoption of the marine diesel engine in the mid-21st century that the last sail-based merchant vessels were finally decommissioned. With the exception of very profitable routes and cargoes, such as the China tea trade, which was served by large and fast tea clippers, most sailing vessels were rather small, with large numbers of schooners of around 60 feet (18 metres) and crews of about a dozen, and with the vast majority of ocean-going vessels under 100 feet (30 metres) in length. There was a tendency to build larger merchant vessels in the richer trading nations and during politically stable and prosperous times but, even there, less prosperous and uncertain times brought a reversion to norm. There were many reasons for this, from the inability to secure financing for an ambitious shipbuilding endeavour, to lack of profitable cargo with which to fill a large vessel.

A different logic applied to building military vessels, where ability to project force was prioritised above economy, and where large crews could be obtained cheaply from the ranks of young men who were pressed into service by the simple expedient of denying them any other option. Conditions on board could be almost arbitrarily brutal, with discipline imposed through flogging. Disgruntled seamen swelled the ranks of pirates and privateers, who were often unopposed in their confrontations, because the seamen often sympathised with the pirates rather than with their own loathed and despised officers.

Although, within the larger naval empires, the horrid naval traditions often carried over to the merchant fleets, including the megalomania, the brutality, and the purpose-bred viciousness of the officer class, in general merchant vessels could not exceed a size that could be sailed profitably, with full loads of cargo and the smallest possible crew. Significantly, a crew of about a dozen is the optimal size for a self-organising, self-managing, tightly knit group. Anthropological research has shown that groups larger than this size either have to expend an inordinate amount of time on social grooming activities (politics) to preserve group cohesion, or they have to be structured in a rigid hierarchy and disciplined to instil blind obedience, with vastly lower effectiveness in either case. Such limits appear to be biologically determined: humans have evolved to be most effective in self-organized groups of about a dozen. A smaller crew is problematic, because there would not be enough hands to comfortably man all watches, there being typically two four-hour watches per day per crewman, and two crewmen per watch, for a minimum of six crewmen. Add the captain and the first mate, and that brings it up to eight; a cook (since feeding this large a crew is quite a job) and a bosun (who typically does not stand watches) bring it up to ten. Throw in a mechanic and a steward, and you have a full dozen. And so it turns out that the most efficient vessel is one that can be sailed by a crew of about a dozen men.

High costs of predation were by no means unique to overland transport. At sea, both privateering and piracy abounded, the distinction hinging on the presence of official sanction rather than the manner in which the business was transacted. Privateers carried government-issued letters of marque allowing them to take tribute from citizens of a certain country as reparation for past misdeeds, such as damage caused or non-payment of loans. Pirates lacked such official permission, but the distinction was often an informal one. Additional duties were often imposed at the harbours that were the point of departure and the point of arrival. Since ocean-going vessels are restricted by their deep draught in their options of harbours and port facilities, it is easy for authorities to collect duties and fees from them. Moreover, certain governments went beyond this and designated certain ports as “staple ports” – the only ones through which commercially important products, such as Sicilian wheat, could be shipped, to simplify the process of collecting export duties.

Ocean-going ships were built with economy foremost in mind, cargo capacity second, and crew safety and comfort at sea left as an afterthought. Typically about a third of the expense of a journey was represented by the amortisation and maintenance costs of the vessel itself, with the remaining two-thirds going to the crew, as provisions and pay. If the vessel was to be defended against piracy, the additional expense of arming it could as much as triple the costs. Before the development of naval guns, security at sea was largely a matter of having superior numbers in hand-to-hand combat. The advent of naval guns made the contest rather uneven for a time, with large naval ships being able to threaten any smaller vessel with almost total impunity. With the arrival of ubiquitous and powerful small arms, shoulder-fired weapons, and a variety of special-purpose missiles and explosives, the odds have been evened, and mutual assured destruction prevails on the high seas. Navy ships have to remain on constant alert against even a small dinghy that might cause them serious damage as happened in Aden in 2000 with the US Navy destroyer USS Cole. It is quite a challenge for pirates to gain control of a vessel without getting killed or sunk if the prey vessel is armed and keeps a sharp lookout. Most confrontations with would-be pirates can now be prevented by a simple show of arms.

Although every effort was made to cut costs, the design and construction of ships was mired in conservatism everywhere and sailing technology was slow to diffuse westward from China and the Arab world. Even then, it was absorbed only partially. The pinnacle of Western sailing ship evolution is the unwieldy square-rigged vessel, which required the crew to go aloft in all conditions to handle sail – something that is neither necessary nor desirable, and one of the many problems that the Chinese and the Arabs had solved many centuries previously. And yet these manifestly imperfect vessels were the ones that explored and conquered just about every corner of the globe – a process that had largely run its course by the time the first steam-ship was launched in the 1840s. Countless lives were lost due to poor design, shoddy construction and incompetent command, but so great are the advantages of water transport over land transport that the gains were considered worth the risk.

In the light of this, what transport technologies will be relevant to an energy-scarce, climate-disrupted, socially chaotic future? We can foresee that road traffic will be greatly reduced as paved roads revert to dirt and become eroded and, in places, impassable, as bridges collapse from lack of maintenance, and as predation by both local officials and highwaymen increases both the costs and the dangers. Once again, pedestrian traffic and caravans of pack animals will try to evade official and unofficial predation, opting for the less popular, more circuitous footpaths instead of the direct and open road. Canals and other navigable waterways will once again play a much larger role in inland transport, with barges pulled by draught animals along towpaths and with sail-boats carrying freight and passengers along the sea-coasts. As the sea-ports that currently serve container ships, bulk carriers and tankers are submerged under the rising seas, the current hub-and-spoke transport networks will collapse, and smaller coastal communities will once again find ample reason to want to build and provision ocean-going vessels to trade with faraway lands.

Here are some questions we might ask ourselves

  • “How can we help? What useful technological legacy can we bequeath to future generations?”
  • “What if, instead of squandering its remaining resources on lavish parting presents for its ageing rentier class, the current profit-and-growth economic paradigm were to be quietly replaced with the idea that society should serve its children and grandchildren, should any be lucky enough to survive”?
  • “What can we usefully accomplish in the time remaining before inescapable resource constraints force industrial life-support systems to stop functioning? What technological heirlooms and key pieces of learning could we convey, in the form of a living tradition, to give future generations a chance at surviving the dystopian future we are now working so hard to construct for them?”

It is becoming clear that future generations will be faced with a number of new challenges. One is that rapid climate change is very likely to put an end to the last ten thousand years of benign, stable climate. It was this rare episode of climate stability that allowed agriculture to develop and flourish and permitted nomadic tribes to settle down in one place without the risk of starvation. It allowed agrarian societies to produce such large food surpluses that cities and towns could become established, eventually growing to millions of inhabitants, all fed with crops grown elsewhere, at first in the immediate vicinity and now quite far away. As the climate deteriorates, people will be forced to return to a migratory and nomadic existence to minimise the risk of starvation by staying close to the sources of their food and diversifying them across large geographic areas. In other words, they will go to the food rather than having the food brought to them.

Another challenge will be posed by rising sea levels. The latest forecasts indicate that coastal communities will either adapt to life with constant flooding, salt-water inundation and storm erosion, or be abandoned. Ancient ports such as Cádiz, which was built by the Phoenicians and has been in continuous use ever since, will no longer be able to function. Formerly sheltered harbours will become exposed as barrier islands are eroded away by storms. Material from newly eroded shores will form shoals and silt up harbours and navigation channels. Efforts to resist the deterioration such as defending, existing shorelines, building higher jetties and breakwaters, constructing dykes and sea-walls and dredging harbours and inlets, will eventually prove futile as sea levels are likely continue to rise for many centuries. Consequently, those who wish to occupy and use the shoreline will have to find ways to cope with constant flooding.

In the parts of the world where people still walk or use pack and draught animals, they will muddle through somehow but it remains a large open question whether or not they will be able to continue to traverse oceans. Throughout history, the ability to sail the oceans has conferred tremendous advantages. Seafaring pre-dates industry, but it does require access to appropriate boat-building materials and a seafaring tradition.

Future generations will face three major problems in their attempts to preserve their seafaring abilities:

  1. Current, industrial shipbuilding practices, as well as the vessels themselves, will be of no use without both a functioning industrial economy and the widespread availability of transport fuels.
  2. Going back to traditional, wood-based shipbuilding techniques will not be possible because logging and deforestation have depleted the supply of the high-quality timber
  3. Access to the ocean will be in most places become complicated as the rising seas silt up inlets, navigation channels and harbours and wash away waterfronts. Deep-draught ocean vessels will find land access obstructed and difficult due to the eroded shoreline.

The vast majority of existing ocean vessels are welded out of steel plate and are propelled by diesel engines that burn bunker fuel, a low-grade petroleum distillate. For their operation, they require industrial facilities such as container ports (for loading and unloading cargo), bunkering ports (for taking on fuel) and dry docks (for maintenance). A vanishingly small percentage of overall gross tonnage is comprised of sailing vessels, which are built and operated mainly for the purposes of preserving maritime and naval history, luxury and ostentation, recreation and sport – pursuits lacking any practical merit. A truly infinitesimal number of more practical boats is custom-built by professionals or amateurs, and an even smaller number of these is actually sailed extensively on the high seas, but these voyages provide the vast majority of interesting contemporary seafaring narratives (“yarns”). Some of these unusual vessels can provide a glimpse of the future. Although the vast majority of even these vessels rely on industrial materials (marine plywoods and epoxies, fasteners, aluminium extrusions for masts and spars, stainless steel wire rope for the standing rigging and petrochemical-based synthetics such as long-strand polyester for the sails and the running rigging) their overall designs are sometimes sufficiently low-tech (which is to say, advanced) to survive the transition to the post-industrial age.

A revival of traditional, wooden shipbuilding is inconceivable in most places, as the required quantities of high-quality timber would be prohibitively expensive and its local supply would be quite limited. Most areas of the world, and especially those near sea-coasts or navigable rivers, have been extensively logged and largely denuded of old-growth trees – those with dense, clear grain that are useful for building hulls. Forest productivity is also being reduced because rising atmospheric carbon dioxide levels are causing rain to become more acidic. Carbonic acid has a number of negative effects on trees: it dissolves aluminium compounds present in the soil, which plugs up tree roots, starving the trees of nutrients, it dissolves nutrients in the soil, causing them to leach out and drain away, and it harms soil biota that help trees absorb nutrients. Thus even concerted long-term efforts at growing trees suitable for shipbuilding may not yield good results.

Large, deep-draught vessels would not be suitable for the new coastal conditions. Smallish ones, about 60 feet (18 metres) long, with a shoal draught of about 4 feet (120 cm) would be much better. They would have to be sturdily built with flat (rockered but not flared) bottoms to let them settle upright on the bottom at low tide. But it would also have to be a seaworthy, blue water sailing vessel, able to ride out storms up to and including tropical cyclones.

Dmitry Orlov's shoal-draft boat, Hogfish, at anchor in Salem Harbor, Mass.

In 2006, I put my findings together in an article, The New Age of Sail [1]. At that time I had had very little actual ocean sailing experience, and had to rely almost entirely on second-hand information. I have since purchased a sailboat of the sort I described: a versatile and practical shoal-draught ocean-capable boat. My wife and I sold our flat and moved aboard the boat. We have since spent close to two years sailing the entire length of the eastern coast of the United States, from Maine to Florida, including rivers, canals and long stretches of the open Atlantic. We have encountered some very lively conditions whipped up by tropical storms and hurricanes. In the process, I was able to learn enough about boat-building to improve the design, building a new rudder and making numerous other adjustments and improvements. I also fitted it with solar panels and a wind turbine, a composting toilet, and a rainwater collection system.

I am very happy to report that just about everything I wrote in The New Age of Sail I have been able to confirm by direct experiment. I am also quite convinced that, in spite of what some sailing traditionalists and fashion-victims might think, shoal-draft seaworthy boats are very much a reality, and that it is quite possible for a dedicated home-builder to vastly exceed the results of a commercial boat-builder at a small fraction of the cost. Such boats may not please those people whose minds are fixated on the idea of getting to the finish line just a tiny bit faster than the next competitor, or people who have a fetish for varnished wood and polished bronze, or the various other strange fixations and affectations that affect what little has remained of the sailing world, but it is quite hard to see why they would be relevant.

My boat is decidedly not post-industrial. It is constructed of marine plywood (fir veneers laminated with synthetic adhesive), sheathed in epoxy and fibreglass and painted with polyurethane paints. The masts and spars are aluminium extrusions, the rigging is stainless steel, and the sails and lines are of synthetic fibre. It is equipped with advanced electronics, including an autopilot and a GPS chart-plotter. Yet there are many things about the overall design of this boat that are just right. It only draws two feet, it handles very well with the centreboard up (which is only needed when sailing upwind or manoeuvring in close quarters) and so it can be sailed over shallows. It can be run aground or beached without risk of damage and it settles upright at low tide. It rides quietly to anchor even in high winds (a surprisingly important but neglected aspect of yacht design). It is fast for its size, and it is so stiff that it is virtually impossible to capsize. Its almost square hull cross-section provides far more stowage space than round-bilge boats of much deeper draught. Its motion in a seaway is steady and gentle, allowing us to enjoy a nice cup of tea in conditions where the crews of other boats apparently have had to brace themselves to avoid being tossed about the cabin.

But the choice of materials poses a problem. However, as Arthur Conan Doyle put it, “Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth.” And so, by eliminating all industrial materials and technologies, as well as the pre-industrial materials that are no longer affordable or available in quantity, I have arrived at what must be, in the end, the only viable set of options for building an unlimited number of ocean-going vessels of the sort that would be required. Given the eventual unavailability of steel plate and welding technology, or high-quality hardwood, or petrochemical-based composites and synthetics, the one remaining choice of hull material is… ferrocement. Many such hulls have been built, with mostly good results, the bad ones generally resulting from improper techniques used by overly ambitious beginners enticed by the very low cost of the materials involved.
If done correctly, the resulting hull is strong, long-lasting, maintenance-free and fireproof. Cement is a pre-industrial material that was already known to the ancient Romans, who used it, among other things, to surface the spillways of aqueducts. It is currently available as an industrial product and in vast quantities, but in the small quantities needed by artisans for plastering hulls it can be produced using non-industrial techniques, by crushing and baking out limestone and clay in home-made kilns. It could conceivably be made using renewable energy: baking out limestone is potentially a good application for concentrating solar technology, while crushing and grinding can be powered by windmills or waterwheels. Limestone is available in unlimited quantities through manual surface mining in many places throughout the planet. The preferred aggregate used for building ferrocement hulls is river sand – sharp, almost completely indestructible granules of eroded hard rock that have not been weathered by surf or wind – a material that is also ubiquitous.

The steel armature that holds the cement plaster together typically consists of small diameter steel pipe, steel rod and steel mesh. These are industrial materials, but they will remain available for a long time past the end of the industrial age, in the relatively small quantities required for building hulls, because they can easily be reclaimed from abandoned industrial structures and facilities. The armature (called “the basket”) is assembled by hand, with simple hand tools, by bending the material into shape and tying it together with short lengths of wire. While the steel armature is a well-understood construction method giving a strong, durable result, it may be possible to replace the mesh and perhaps other parts of the armature with natural fibre. Clearly, thorough testing would be needed before a boat-builder would commit to such a change but this is not an urgent issue because the quantities of scrap metal that the two centuries of industrial development will have left behind will be sufficient for building a very large number of ferrocement hulls far into the future.

Covering the basket with mortar is usually performed by a gang of expert plasterers in a continuous session that may span several days. To become a first-rate ferrocement plasterer, one would start by becoming a master plasterer and then specifically train for the much more demanding task of plastering hulls. To control porosity, the mortar mix used for hulls has to be quite dry compared to the mixes used for other types of construction, making it more difficult to form it into sheets without any voids and without pulling aggregate to the surface. The skin of mortar has to be fair and smooth and as thin as possible (typically between 12 and 20 mm) but thick enough to prevent any part of the basket from showing through (to prevent corrosion). Tight process control is needed for optimum results, which are achieved by controlling temperature and humidity, keeping all contaminants out of the mortar, using precise mixing and plastering techniques, and keeping to a specific hydration schedule. After plastering, the hull has to be kept moist for about three months, during which it slowly gains strength and plasticity.

Unfortunately, the effects of improper technique often become apparent much later, when the hull leaks, abrades or cracks and the armature rusts, resulting in a shorter service life. However, sudden and catastrophic failures seem to be a rarity, and an older hull that would no longer be used for ocean sailing can still be considered safe for use in sheltered waters. Ferrocement hulls are quite easy to repair, and some that have suffered heavy damage by becoming impaled on rocks and coral-heads were subsequently placed back into service after being quite casually repaired with cement mix and a trowel.

There are likely to be opportunities to perfect the properties of the mortar. Microscopic cracking of the mortar, which is structurally benign but increases porosity, can be prevented by the addition of glass fibre chemically treated to withstand the alkaline environment of the mortar. While glass fibre is composed of minerals that are plentiful, it is currently an industrial product. However, as with cement, it is possible to imagine that a way will be found to produce it using concentrating passive solar in combination with wind or water power. The addition of glass fibre to the aggregate also makes the mortar lighter and more impact-resistant: some recent formulations for architectural use have resulted is quite thin sheets that nevertheless can withstand repeated blows with a pick. Another possible direction of research involves making the mortar self-repairing by inoculating the mortar mix with a culture of calcifying bacteria, along with their favourite food (urea). When a crack starts to form, the bacteria become active and fill the crack with new calcium. It remains to be seen whether increasing ocean acidity resulting from carbon dioxide emissions will interfere with this process.

So the prospects for building quite serviceable sail-boat hulls without recourse to industrial materials (with the exception of reused steel) appear to be reasonably good, provided the skills can be established ahead of time and passed on as part of a living tradition. But what about the other essential components of a sailing vessel – the masts, the sails, and the rigging? The current, industrial practice is to use extruded aluminium masts, or masts glued up out of precisely fitted planks using high-technology synthetic adhesives. In the past, sailing vessels had “grown” masts, which consisted of a single tree trunk. The smaller vessels could use such a mast in a free-standing fashion, supported only at the deck and shaped to give it a taper toward the top. On larger vessels the masts were supported on all sides by tensioned lines. By the time the age of sail was nearing its end, however, trees of the right size and quality for “grown” masts had become a rarity and shipwrights were forced to switch to “made” masts which consisted of many smaller tree trunks shaped and held together using dowels and hoops.

Although “made” masts could be given arbitrary thickness and taper, eliminating the need for standing rigging, apparently shipwrights could not imagine such a radical departure from the norm. For such radical post-industrial shipbuilding solutions we have to turn to the ancient Chinese, who explored much of the earth in their large sailing junks, which, incidentally, were equipped with free-standing “made” masts of bamboo. The advantages of free-standing masts are numerous: their design is much simpler, they have less wind resistance up high where wind speeds are highest, they can be taken down more easily, to make the vessel less noticeable when navigating inland and so to avoid predation, or to pass under fixed bridges, overhanging trees and other obstructions. It is difficult to design free-standing masts that are particularly tall, but since shoal-draft vessels of the sort being considered here cannot support masts that are much taller than the length of the vessel without making it unstable, equipping them with free-standing, tapered, “made” masts seems the obvious choice.

With regard to sails and control lines, the modern practice is to use low-stretch synthetic fibre such as long-strand polyester. The high strength and low stretch of these materials allowed designs to progress very far in the direction of very large expanses of fabric unsupported by any internal structure, controlled by a few lines, all under very high tension. The pre-industrial practice was to use much weaker and stretchier natural fibre: cotton or linen for sails, and manilla or hemp for rope, limiting the size of each sail. However, the ancient Chinese have done extremely well with gigantic sails made of even weaker materials such as woven grass mat by using an ingenious rig that distributed the loads over many small lines and panels of sailcloth: the Chinese junk rig. Modern adherents of this rig rave about its numerous merits such as the fact that it can be controlled as a unit, and have crossed oceans with sails so threadbare that they could be punctured with a fist, yet they held together through ocean storms because the individual panels were small and braced by stiff battens. At present, the Chinese junk rig is a splendid solution waiting for the problem that is about to present itself: the end of strong, low-stretch synthetic sailcloth. The junk rig is wonderfully versatile, allowing a vessel to be controlled without leaving the pilothouse, tacked up a narrow channel and even sailed backwards. Blondie Hasler, who has crossed the Atlantic in his junk-rigged boat “Jester” wrote that the ease of handling was such that he could imagine making the entire crossing in bathrobe and slippers, without once venturing out on deck.

But sometimes an auxiliary form of propulsion is needed – if only to be able to steer when drifting in a tidal or river current while becalmed, or to pass under obstructions with the masts lowered, or to shift berth in close quarters. Luckily, we can once again turn to the Chinese for a post-industrial solution that has already stood the test of time. Oars are not particularly useful on anything but very small sailboats because they would have to be quite long to reach down to the water. This would make them unwieldy and their action awkward and inefficient. Oars are inefficient in any case, because they have to be lifted out of the water and retracted for each stroke, wasting time and energy. The Chinese solution for propelling larger sailing vessels is the yuloh: a long, slightly curved sculling oar that extends aft with its blade floating just below the water. To propel the vessel, it is pivoted and moved to and fro by crewmen standing before the mainmast. The resulting motion is vaguely similar to that of a fishtail. With roughly 1kW peak power output per crewman, and with 2 yulohs worked by 4 crewmen each, as much as 8kW (10 horsepower) can be produced for a duration. On flat, still water this is more than sufficient to move even a fairly large vessel. When not in use, the blades of the yulohs are lifted out of the water and lashed to the sides of the hull.

Vessels of the design sketched out in this article would be of immediate practical value to numerous people throughout the world because of the wide variety of purposes to which they can be put. They can be used for transporting passengers and freight over open water and on rivers and canals. They can be used as floating, mobile workshops, schools, clinics, warehouses, offices, and residences on coastal land that is increasingly prone to flooding. This would allow people to hold onto their land for as long as possible and to float closer to shore or further inland when the time comes without becoming dispossessed in the process. The boats can be used for seasonal migrations, to gather scarce resources over a wider expanse and to avoid having to spend summers or winters in hot or cold climates. All that is required for building such boats is a bit of coastal land and materials, some of which are free (river sand), some quite inexpensive (cement, recycled metal), and others that can be grown and worked by hand (bamboo, hemp). The largest input is, of course, labour. Much of it can be semi-skilled physical labour that can be contributed by the local community. Some highly experienced, expert labour is also needed but only at certain key stages of the building process to ensure that the results are long-lasting, safe and reliable.

In a world where rising seas are already putting millions of people at risk of losing their homes, their lives, or both, a programme of building large numbers of inexpensive, practical, utilitarian and versatile sailing craft is a direct way to provide flood-proof, earthquake-proof, fireproof and storm-proof habitation, to build communities, to create local resilience, and to provide hope for a survivable future. It is a way to create connections between different parts of the planet that can survive into the post-industrial age. It enables people and goods to be carried in a way that avoids the predation that will be an inevitable element of a disrupted time. It offers us an opportunity to make sure that we remain a seafaring species even as the fossil-fuel era recedes into history, and gives us a way to salvage something very useful out of the wreckage of our industrial past.

Endnote

  1. Downloadable from http://www.culturechange.org/cms/index.php?option=com_content&task=view&id=67&Itemid=1

A three-step emergency plan for Ireland

by Richard Douthwaite

STEP 1 Introduce non-debt money

The country is trapped by its debts. Its immediate goal has to be to escape and achieve a much greater degree of financial freedom. The current strategy for doing so relies on running a large surplus of exports over imports for a decade or more and making repayments and meeting the interest charges out of that. In essence, this means earning money which people in other countries have borrowed and using it to decrease Irish borrowings. This is going to be a very difficult trick to pull off even if the global economy grows strongly for the foreseeable future because strong global growth is almost certain to increase Ireland’s energy import costs, thus eroding its export surplus. Moreover, as the growth could also increase the interest rates payable on its debts, the country would be forced to try to run up a descending escalator. Two other possible strategies have a much better chance of success.

1. Collective action within the eurozone

All eurozone countries have debt problems — even Germany’s ten biggest banks were reported in September 2010 to need €105bn in additional capital to buttress their solvency. This common debt problem creates the slim possibility that the European Central Bank will be persuaded by increasing social unrest to create money out of nothing by quantitative easing and, totally abandoning its orthodoxy, to give it to governments in proportion to their populations so that further public spending cuts can be avoided and their national debts reduced. Private debts need to be reduced too so every EU citizen should be given some of the ECB money to reduce their borrowings. People with no debt would be required to invest their gift in ways that would lead to a low-carbon economy — the money would be distributed in such a way that it could not be used directly for consumption spending.

Small, carefully controlled amounts of non-debt money could be injected into the eurozone economy at regular intervals until public and private debt levels had been brought into better balance with public and private incomes. The immediate effect of this quick-and-easy-to-implement approach would be to take pressure off the banks by reducing their lending, thus improving their capital-adequacy ratio. Their bad debts would be reduced and the additional economic activity the new money generated would make it easier for their customers to service their remaining debts. Asset values would cease to fall and may even begin to rise again, thus improving the banks’ security.

The public, which has been angered by the fact that the banks are being bailed out while ordinary families in negative equity have been ignored, would be enthusiastic about their debts being cut. They would regard the scheme as fair as everyone would be being given the same amount of new money. They would also welcome the fact that public services were not being reduced.

It is hard to say what effect injecting money in this way might have on the value of the euro. It might fall initially on inflation fears but recover later when it became clear that the eurozone economy was doing well and the banks and public finances had been stabilised. Any fall in the value of the euro would help with recovery, of course, as it would increase the zone’s competitiveness and mean more internal production for internal use.

2. An internal solution

The collective solution above should be promoted at EU level but, such is the level of monetary conservatism in Germany, it is most unlikely to be adopted and Ireland will almost certainly need to take an independent way out. Its attitude should be that if the ECB will not provide it with debt-free money, it must provide its own and that it is going to launch a currency to run in parallel with the euro. This could be done in the following way.

  • The new currency, the harp, would be announced as an emergency measure. It would be entirely electronic and used only to trade. It would not have any guaranteed exchange rate with the euro although, initially at least, the government would accept it at parity with the euro for the payment of taxes. The commercial banks would be instructed to open harp accounts for each of their customers. Individuals with accounts in more than one bank would be asked to nominate the bank at which they wished to hold their harp account. A quantity of harp would be deposited in each individual’s account to allow him or her to buy goods and services. They would transfer the harp they received to each other and to companies using their mobile phones for small amounts and from their computers or through their banks for larger sums. No harp notes and coins would be issued. This is essential if the currency is to be removed from circulation later on. Their absence also gets around Article 105a of the European Treaty which states that “The ECB shall have the exclusive right to authorise the issue of bank notes within the Community.”
  • Firms would open harp accounts but they would not be given an initial float; they would be expected to earn their harp by supplying the public. It would be up to each company to tell prospective customers which goods and services they were prepared to supply for payment entirely in harp and, if they wanted a mixed currency payment, the price in a combination of euros and harp. Similarly, it would be up to employers and employees to negotiate what proportion of wages could be paid in harp.
  • Harp accounts would not be confidential; the issuing body would have access to them, regardless of the bank that provided them, so that it could manage the system.
  • As the volume of business being done in harp increased, the issuing body would watch the velocity of circulation closely and, once it had crossed a previously announced threshold, it would give more harp into circulation by adding them to the accounts of those who had the highest velocity themselves. However, the harp given to accountholders initially or to enable them to trade more actively later on would not belong to them. Anyone whose velocity fell below a certain level would have a percentage of the harp they had been given removed. This would enable the supply of harp to be kept tight to maintain its value. So, for example, if the euro economy began to pick up and less trading was done in harp, unearned units could be removed from the slowest accounts.

A parallel currency on these lines would attract much less criticism from the European Commission, the ECB and the other member states than a decision to leave the eurozone to revert to a national currency. It would also be much simpler and less disruptive. The government would naturally point out to its partners that if the euro became abundant again and the harp ceased to be used so much, units would be withdrawn. Eventually, it would say, the harp system could wither away entirely because companies would not want to be bothered with keeping their books in two currencies and would stop accepting it. However, if the analysis in this book is correct, such a withering away would be unlikely to happen unless the euro, too, was issued on a non-debt basis.

The introduction of the harp would be very popular with the public. After months of what has been seen as the bailing out of the better-off, the state would be seen as doing something for ordinary people. Anyone with euro debts would immediately find that their problems were eased because, now that they had the harp for some of their expenditure, they could use their euros to keep up payments to their bank. This would immediately cut the banks’ bad debts and thus the risk of the state’s guarantees being called.

The government itself would be able to avoid public spending cuts cuts by paying a proportion of its social welfare and salary costs in harp. Moreover, the extra activity in the economy would increase its tax revenue, reducing the number of harp it had to issue to balance its income and expenditure.

STEP 2 – Restructure the financial system

All banks borrow short and lend long. This means that they are always technically insolvent and only the depositors’ confidence, supplemented where necessary by state guarantees, ensures that they — and the financial system — remain in business. This timing imbalance contributed to the credit crunch when some banks, Northern Rock and Anglo Irish among them, found that they could not replace their short-term borrowings with new ones when the former had to be repaid.

In future, banks should be required to match their periods for which they lend with the periods for which they have borrowed from their depositors. Moreover, bank lending should be limited in term. It should be purely to enable their customers to overcome temporary imbalances in their inflows and outflows. Long-term funding should be handled by new institutions on a different basis, such as equity partnerships.

Step 2 therefore involves getting long-term lending off the banks’ books and onto those of the new funding organisations. This could be achieved if the banks put their property loans into equity partnerships in exchange for shares that they then sold on to private investors and pension funds. This would allow them to climb down from the grotesquely over-exposed property position they built up during the boom. Over 80% of the loans the banks made in 2006 were property related. As a result, 63% of the loans they had outstanding at the end of 2009 were to do with property whereas only 1.8% were to manufacturing industry. up and less trading was done in harp, unearned units could be removed from the slowest accounts.

As it is currently structured, three conditions have to be met simultaneously before the Irish property market can work properly. These are:

  1. potential buyers/lessees have to be confident that property prices and rents are not going to fall, leaving them either in negative equity or paying a fixed rent that makes their business uncompetitive
  2. potential buyers/lessees have to be sufficiently confident about their future incomes to be happy about taking on long-term commitments
  3. long-term finance needs to be available at affordable interest rates.

Conditions 1 and 2 can never be met in a shrinking economy so it is immaterial whether loans would be available or not. With equity partnerships, however, the situation is quite different as no-one gets locked into a long-term rental agreement and declining property prices do not matter because the assets acquired at current prices are never going to be re-sold. All that concerns investors in equity partnerships is the income they get from the rents, and those rents move up and down according to market circumstances. The widespread use of equity partnerships or something similar is therefore essential for a functioning economy in circumstances in which incomes are likely to decline.

STEP 3 – Invest in energy independence

Ireland’s third target should be to achieve energy independence. It should finance this by setting up an agency to sell energy bonds, each of which would entitle the owner to the value of a specific amount of energy at some specified date in the future when the facilities that were built with the capital raised by the bond sales had come onstream. The agency, which would also make a market in the bonds so that holders could sell them before maturity, would work on both community and national level.

Community level

The agency’s community energy division (CE) would be invited by communities to study their potential renewable energy sources and produce a report on how they might be developed and the cost of doing so. If the community decided to go ahead, it would set up a company and CE would act as a consultant to that company. Suppose, for example, the locality had wind, biomass, hydro and animal slurry. CE would work out a way of developing these in combination with each other so that the highest value local energy needs (lighting, vehicle fuel, cooking gas?) were met first and, as far as was possible, whenever there was an electricity flow out of the community, it happened at times of peak demand elsewhere. Equally, if the wind was not blowing and the community had to take in power, the amount taken at peak times would be minimised by putting the biomass-fired CHP plant on full load and running the hydro plant. Smart meters would also help by cutting out low-priority electricity uses temporarily.

An energy bond might be for 10,000 kWh for delivery in December 2015. When it matured, the holder would get whatever the inhabitants of the community were paying for 10,000 kWh at that time. No interest would be paid on the bonds. Instead, those with longer maturity dates would be sold at a lower price than those with shorter ones. potential buyers/lessees have to be confident that property prices and rents are not going to fall, leaving them either in negative equity or paying a fixed rent that makes their business uncompetitive potential buyers/lessees have to be sufficiently confident about their future incomes to be happy about taking on long-term commitments long-term finance needs to be available at affordable interest rates.

Each district would issue bonds to finance its projects but CE would provide a guarantee for them. Its relationship with the community company would therefore have to give it sufficient authority over the management of the projects to ensure that enough power was being produced to generate the income to pay off the bondholders as their bonds matured. CE might, for example, have a management contract. It would charge a fee for its guarantees and for making a market in the bonds. The bonds could be sold anywhere in the world — it would not be necessary for locals to buy them. Equally, it would not be necessary for all the projects which the bonds financed to be in a community’s own area. Some communities would have the potential to carry out big projects and other communities could share in these.

CE would make the arrangements for the electrical component of the community energy company’s output to be fed into the grid. Anyone in the local area who wished to do so could nominate the community company as their electricity supplier and the bill they got from ESB Networks, which would still, of course, read their meters, would be in two parts. One part would be the actual marginal cost to the community company of producing and delivering the units they used. This cost would include the maintenance costs of the wind turbine and the cost of the woodchip for the CHP plant. It would also include the payments for the agency’s services, the cost per unit of using the grid and the charge for top-up and spill, which the design of the system and the smart meters would minimise.

If a kWh cost 15 cents, the actual costs of production and delivery might amount to 5 cents. VAT would be paid on this part of the bill. The rest of bill would be to cover the cost of buying out the bondholders as their bonds matured. This would be a loan repayment and no VAT would be payable on it. Bills for heat or biogas direct from the community company would also be in the two parts.

Two-part bills make the system tax efficient but there is more to them than that. The non-VAT-able part of the bills would be a form of saving for the customer. Each payment a customer made would build up his or her investment in the community company. Once they reached a certain age, however, the savings element would stop and they would only pay the marginal cost for their power. They would also get their capital investment back month by month as a form of pension, paid for by younger customers taking over their stake in the community company.

This savings element would make the system very attractive and the price of electricity from other suppliers would have to be considerably lower than that from the community company for them to be able to compete.

National level

The agency would also stand ready to issue bonds on behalf of the promoters of major projects and to make a market in the bonds it had issued. These bonds would not carry its guarantee, however. Investors would have to rely on the management of the companies concerned, which could always take out performance insurance in the way that film-production companies purchase completion bonds to give comfort to their investors.

The agency’s activities would provide a safe home for Irish savings while at the same time increasing economic activity, much of which would benefit the construction sector. There would be to a rapid acceleration in the pace at which Ireland replaced its imported fossil energy with renewable energy from its own sources.

Preface by Eamon Ryan (Irish edition)

by Eamon Ryan, Minister for Communications, Energy and Natural Resources, Ireland

Managing a retreat is the most difficult of all political tasks. It is always easier to offer something new rather than to try to take back an existing benefit. But when it comes to our use of fossil fuels, which have provided huge benefits to our society, it is now time for an organised retreat.

We need to retreat because the emissions from burning coal and gas threaten the climate system upon which our lives depend. We also need to do so because we face a peak in global oil production and we have to start changing our food and transport systems to cope with the decline in oil supplies that will follow.

I remember Colin Campbell setting out the need for such a retreat at a Feasta conference in Autumn 2002. Like several of the members of the Association for the Study of Peak Oil, he spoke with expertise as a former oil exploration geologist but also with a certain independence as he no longer had any vested interest in the oil business.

Rather than relying on the claims from governments and oil companies about their reserves, he was one of the first people to conduct an oil-field by oil- field analysis to try and determine the actual flows of oil we could expect. His analysis estimated a global peak in production in the early part of this decade. Despite a trebling of oil prices in the interim period, global oil production has shown no real growth. New wells, tar sands and gas to liquid production are only managing to replace declines in existing fields. The peak in global oil discoveries occurred in 1963 and, with fewer big fields being discovered each year, the task of covering production declines has become increasingly difficult.

The retreat from over-reliance on oil needs to start two decades in advance of a future decline in production, as this is the half-life of much of our machinery which depends on relatively cheap oil supplies. The power infrastructure we build today will be in place for a lifetime. The cars we buy today will be still on the road in ten years’ time and our air and shipping fleets would take decades to modernise even if we had easy alternatives to these oil-dependent transport systems.

The retreat will have to be organised on a global scale by all the major oil- consuming countries, if we are not to see huge transfers of wealth and political power to the producing countries. Estimates vary about the speed of decline that we can expect but even the more optimistic figures would require us to reduce our demand for conventional oil products by three or four per cent annually to keep below supply limits.

Some will argue that new natural gas supplies will allow us get off this hook. It is true that new shale gas supplies have altered the international gas markets. However, as Dennis Meadows and others showed in the 1972 book The Limits To Growth, the challenge this century will be to avoid breaching one of a number of constraints that come with living on a finite planet. Even if gas is more easily available and even if it has relatively low carbon emissions in comparison to some other fossil fuels, the reality is that simply replacing oil with natural gas will still see us breach the greenhouse gas limits that the best scientific advice says we have to avoid.

After the failure to achieve a global climate agreement in Copenhagen, it is up to individual countries to start showing some leadership and start cutting out the carbon. In Ireland we have the motivation to make that change as we are one of the most imported oil dependent countries in the world. However, we also have the good fortune of being rich in natural resources in wind power, ocean energy and in having a good climate for growing crops which can provide alternative energy supplies. We are also in the right time and place to consider new financial instruments to help make such a switch as we pick up the pieces from our banking crisis.

We have shown that we can change. We are one of the few countries in the world that has put a price on carbon across the economy. At times earlier this year, new renewable wind power supplies were providing some 50% of our electricity. We will be one of the first countries to have a national network of electric vehicle charging points. We are developing real expertise in using new information communication technologies to improve energy efficiency. We are changing our energy utility model to favour the delivery of energy savings in our buildings rather than just selling power supply. However, we are only at the start of the process and it will take consistent effort from our public, political and business system if we are to make the necessary changes.

At a public event recently Richard Douthwaite was asked whether he was optimistic or pessimistic about the state of the world in 2050. He replied that he was neither, but would rather adopt the philosophy of a wise man he had met once in India who said that the Bhagavad Gita taught that we should be neither optimistic nor pessimistic but just do the work which God had put before us.

Feasta has been working for the last ten years raising the alarm, looking for fundamental reforms in our money systems and promoting new ideas as to how we can generate and use energy differently. It has been helping to advance the retreat.

Photo by bjearwicke.

Introduction: Where we went wrong

by Richard Douthwaite

This book grew out of a conference in 2009 called the New Emergency. What emergency was that? Most people didn’t think that there was an emergency then and they don’t think there is one now. They know that the world is facing a lot of problems at present but they probably would not elevate any of them even to the status of a crisis, still less an emergency. The world has always had problems, they think, and it always will. Very few of them think that there’s anything going on at present that requires Ireland to mobilise all its resources in the way that it did in response to the old Emergency, the Second World War.

However, once you recognise that most of the worst problems the world faces have a common cause and that time is running out to solve them, you have an emergency. That’s my position. I believe that the “development” path that the world has followed for the past three centuries has led to a dead end and that immediate action is required if humanity is to have any chance of getting on to a more sustainable path. Every day lost makes a satisfactory future less likely for billions of people, both born and yet-to-be-born, because our options are trickling away with our life-blood, natural resources.

That’s the emergency. We need to apply a tourniquet immediately to give us time to take more drastic action. But who is conscious of this? How many people really grasp the severity of the climate crisis? Or the fact that the production of conventional oil has almost certainly peaked and the amount of energy that is going to be available for the world to use is going to shrink rapidly? Or that energy and water shortages are going to curtail the world’s food supply? What proportion of the general public is really worried about the rate at which species are being lost?

True, everyone knows that several countries have problems with debts or with their banking systems (or, like Ireland, with both), and that they, or people they know, are losing their jobs because of them, but they might not elevate these problems to the status of a crisis unless they live in Greece. They think that, in Ireland’s case, these financial problems began when the housing bubble burst and that the burst was somehow linked to the credit crunch that began when worthless securities generated by the sub-prime mortgage fiasco in the US triggered what was, for a time, an international banking crisis. There’s been almost no recognition that resource depletion was the underlying cause of that international banking crisis and there probably won’t be for as long as the conventional wisdom is that the world economy is looking up and the crisis itself has come to an end.

Even at its height, the financial crisis was only an emergency for those responsible for handling it. A country faces an emergency if an enemy is mobilising on its border to invade, or if its people are dying in thousands from a plague. A family faces an emergency if its house is on fire or if one of its members has been hit by a car and needs to be rushed to hospital. An emergency is a period in which everything else is ignored in favour of immediate action.

From time to time, the chronic problems that face the world erupt and cause a minor emergency such as that on the evening in September 2008 when the Irish banks told the government they might be unable to open the following day. When something like that happens, people stay up late, the eruption is dealt with and then life goes on until the next eruption occurs. Few of us think that anything radical has to be done. We assure each other that minor tinkering, like holding an inquiry, beefing up the regulatory system and limiting bankers’ bonuses, will be enough to allow us to carry on living pretty much as we do now for the foreseeable future.

We are ignoring these eruptions in the way the inhabitants of Pompeii ignored the earthquakes which preceded the volcanic blast that destroyed them in 79 AD and which had been doing considerable damage for at least the previous sixteen years. Some of the earthquake-damaged houses were actually under repair at the time Vesuvius erupted, with piles of plaster and tools lying where the workers had left them. Rather than moving out, the Pompeiians wanted to carry on with life as usual. They had every reason to do so. The whole Bay of Naples area was booming and the holiday villas of the rich provided a lot of work. Interestingly, those who dropped everything and fled immediately when ash and pumice started raining down probably survived. However, many thought their best chance was to take shelter. They died when the avalanche of hot ash, pumice, rock fragments and volcanic gas began.

The common cause of all our crises today is our use of fossil fuel. Just as addictive drugs alter the metabolism of the human body in ways that create dependency and make it difficult to give them up, fossil fuels have profoundly altered the metabolism of economies and societies. As a result, the systems of production and distribution we have now, and the types of relationship we have with other people, including those within our own families, will be changed out of all recognition as the energy drug is withdrawn. The withdrawal period will be particularly painful in countries that fail to ensure that they have a decent supply of renewable energy methadone available to them. Cold turkey will mean that many people die. Thinking of Pompeii, if we leave it too late before we rush towards a new type of civilisation, we will have to leave behind all our high-tech, high-energy tools, and we may not survive without them.

Here are some of the ways in which fossil energy use has perverted our economies and our lives.

  1. It has transformed manufacturing methods by displacing human labour.
  2. It has transformed agricultural methods, replacing human labour, animal power and sunlight.
  3. It has enabled the world population to grow to a level that may well be unsupportable without its use.
  4. It has devalued human labour and led to widespread unemployment.
  5. It has made the economy reliant on economic growth to avoid collapse.
  6. It has enabled extremes of wealth and poverty to develop.
  7. It has led to the development of industrial capitalism.
  8. It has produced profits that had to be recycled. This led to the growth of the banking system and debt-based money.
  9. By fuelling powered transport, it has destroyed self-reliant local economies and the nature of local relationships.

Once fossil energy began to be used, these perversions were inevitable. About seven years ago, I wrote the concluding essay for Before the Wells Run Dry, a book about future energy supplies which emerged from a previous Feasta conference called Ireland’s Transition to Renewable Energy. That conference was the forerunner for a lot of the thinking in Feasta that laid the foundations for the New Emergency event so I’m going to draw rather liberally on what I wrote in 2003. The essay asked where humanity had gone wrong. When did we take a path which, because ‘one path leads to another’ in Robert Frost’s phrase, inexorably led us to becoming totally dependent on a grotesquely unsustainable energy system?

I argued that the wrong turn was taken in England in the 16th Century as the population began to recover from the Black Death. The increased numbers – a rise from 1.6 million to 5.5 million in less than 200 years – naturally put greater pressure on resources and caused communities to have problems living within the limits imposed by their local environments. In 1631, Edmund Howes described how this had forced them to start to burn coal:

Within man’s memory it was held impossible to have any want of wood in England. But …such hath been the great expence of timber of navigation, with infinite increase of building houses, with great expence of wood for household furniture, casks and other vessels not to be numbered, and of carts, wagons and coaches, besides the extreme waste of wood in making iron, burning of bricks and tiles, that at this present, through the great consuming of wood as aforesaid, and the neglect of planting of woods, there is so great scarcity of wood throughout the whole kingdom that not only the City of London, all haven towns and in very many parts within the land, the inhabitants in general are constrained to make their fires of sea-coal or pit coal, even in the chambers of honourable personages and through necessity which is the mother of all arts, they have in late years devised the making of iron the making of all sorts of glass and the burning of bricks with sea-coal and pit-coal 1

That was it. The thin end of the wedge. The slippery slope. For the first time, humanity was starting to depend on a non-renewable, and hence unsustainable, energy source for its comfort and livelihood. It was understandable that it did. Which of us would have worried about the long-term consequences of burning black stones collected from beaches in Northumberland, or which had been dug out of shallow holes in the ground?

I then pointed out that as the demand for coal increased, the easiest, shallowest mines were soon exhausted, and deeper and deeper pits had to be dug. This posed enormous problems since a shaft floods if it is sunk below the water table and a pump has to be installed to keep things reasonably dry. The early pumps consisted of rags or buckets on continuous chains which were turned by horses or, if a stream was handy, a water wheel. However, the deeper a shaft went, the longer the chain had to be and the more friction the horse or the wheel had to overcome. As this placed a real limit on how deep a mine could go, mine-owners were keen to find other ways of powering their pumps. Around the time Edmund Howes was writing, coal-fired steam power began to be used for the first time for pumping water out of mines. In a somewhat incestuous way, coal energy was being used for mining coal.

The transformation of manufacturing methods

The first steam engines just moved a piston back and forth, which was all that was required to work a cylinder-type pump. It was only during the following century that the piston was attached to a crank to turn a revolving shaft, an innovation in response to a demand for rotary power from cotton mills unable to find additional sites for their waterwheels. This was the type of engine, of course, that powered the industrial revolution and, in my view, led with an alarming inevitability to the problems we have today. It was steam power, in fact, which made the widespread use of machines possible and then, for competitive reasons, absolutely necessary.

The essence of industrialisation is that it produces lower-cost goods by using capital equipment and external energy to replace the skilled, and thus relatively expensive, labour used in hand crafts. Since less labour is used per unit of output, unemployment develops unless sales expand. The mechanisation of sock and lace production in the English midlands led to such widespread job losses that riots broke out in 1811 and 1812. Troops were sent to the area to stop the Luddites, as the bands of destitute working men were called, from breaking into the new factories and destroying the machines. Indeed, had the Napoleonic War not ended in 1815 allowing the factories to increase their sales in Europe and elsewhere, the disturbances might have become serious enough to kill off the industrial revolution. Without wider markets, firms using powered machinery would have either consumed themselves in a competitive frenzy, or seen their technologies banned as a result of popular unrest.

Eventually, however, British exports put most continental craft producers out of business and left the remainder with no alternative but to adopt more fossil energy–intensive methods too. A sales pyramid developed. The early participants in a sales pyramid get rich because they receive commission on the goods they sell to people whom they have persuaded to become dealers too; dealers who, in turn, can earn a commission from others they induce to join the pyramid as dealers later on, who themselves recruit and stock further dealers. And so it goes on, setting up a situation in which everyone in the pyramid can only fulfil their income aspirations if the pyramid does the impossible and expands indefinitely, eventually involving infinitely more people than there are in the world.

The fossil fuel-based production system became dominant by expanding on exactly the same lines. Just as British factories had needed to take over the markets previously served by craft-scale manufacturers in Europe to survive, industrial Europe had to oust artisanal producers elsewhere in the world, and the British sold them the machinery to do so.

Tariff barriers were maintained to allow the new continental industries to build themselves up until they could not only compete with their British rivals but had acquired export markets in which to sell themselves. It was the need for exclusive external markets to solve the problem of mass unemployment at home that led the European powers to scramble to assemble competing empires and eventually to confront each other in the First World War.

As each successive group of countries was forced to adopt mechanised production methods themselves in the hope of escaping poverty, so those who had mechanised earlier sold them the equipment. The pyramid this created grew and grew until it reached the point some years ago when there were no more markets supplied by craft producers to take over. This left firms in the pyramid with no-one to displace but each other, and since then, international competition has become so intense that only certain specialised types of manufacturing such as armaments, aerospace and pharmaceuticals thrive in high-wage countries, arguably because of the subsidies they receive through government contracts or patent protection.

How the economy came to rely on economic growth to avoid collapse

The use of fossil energy not only displaced sustainable manufacturing methods, it also made the economy dependent on economic growth. In a stable, stationary economy, there is no net investment and no net saving. Everything produced in the course of a year either gets consumed or goes to replace things that have worn out. The return on capital is so low – somewhere between 2 and 3% – that it’s only just worth using part of the sales income to maintain the buildings and equipment rather than the business owners spending it on themselves. In other words, the average rate of profit is just enough to balance the society’s desire for income now against its desire for income in the future.

Suppose a new technology – steam power, perhaps – is introduced to this stable economy which enables much higher profits to be made in a particular business sector. The firms in the sector will race to adopt it because those that get it first will be able to cut prices a little and drive the laggards out of business. The would-be leaders won’t be content to wait until they have saved up enough of the money they would normally have spent on maintaining the old equipment until they can afford the new type. No, they will want to borrow the money they need to get ahead. But where is the money they wish to borrow to come from, since their society has no net savings and no spare resources? The answer is that the money and resources can only come from those that would have been spent on maintaining capital equipment in other sectors. The output from the other sectors will therefore shrink, shortages will develop and prices will rise, putting up the return on the remaining capital until it reaches the rate that the sector with the new technology is able to offer.

The arrival of a new technology in one sector therefore increases the rate of return on capital in all sectors. Profits in excess of those needed to maintain production appear for the first time and workers get a reduced share of the amount the society produces. Moreover, the profits belong to the business owners. This creates a capitalist class with potential investment power. I say potential because what happens next depends on whether other innovations follow the first. If they don’t, once the investment needs of the new technology are met, prices will fall and profits drop to the level set by people’s time preference, the 2 or 3%. If, on the other hand, there is a stream of innovations, profits could grow to become a substantial part of national income.

This creates the problem noted by Major C. H. Douglas, the founder of the Social Credit movement, who realised that the wages paid to workers could not buy everything that they had produced and that if there was to be full employment, the profits firms produced had to be spent back into the system. It doesn’t matter how it is spent, but people whose lifestyle is already satisfactory will probably either save it or use it for more investment. If they save it, someone else needs to borrow it and spend or invest it instead.

The situation in a typical country today is that just over 20% of its income needs to be invested back each year as, if it was all saved, 20% of the workforce would find themselves without jobs. But the people doing the investing demand a satisfactory return and only if economic growth takes place and incomes increase will they be able to get one. If the broad mass of investors fails to get a return one year, they will not invest the next. Unemployment will increase and prices will fall, pulling profits down with them. The amount available for investment will be reduced and the economy will move along a low-growth or no-growth path until another series of innovations comes along.

For the past 200 years, however, a flow of innovations has brought about rapid growth. Many of these innovations have involved the substitution of fossil energy for energy from human, animal and solar sources because, if a worker’s efforts can be supplemented in this way, he or she can produce much, much more. An averagely fit man can apply about 75 watts to his work. If he is assisted by a one-horsepower motor, the sort you might find on a hobbyist’s circular saw, he can apply ten times more power to the task and consequently work much faster. A positive feedback develops, with the greater productivity leading to higher profits and incomes and additional investment and energy use. The income gap between those using fossil energy and those who don’t gets wider and wider. In 1960, the average income in high-fossil-energy-using countries was 30 times that in low-energy countries. By 2001 it was almost 90 times larger. Moreover, the 20% of the world living in high-energy, high-income countries enjoyed 80% of world income, investment and trade.

It is therefore reasonable to say that the use of fossil energy facilitated a greater division of income and wealth than was usual between worker and business owner in artisanal societies. It also led to industrial capitalism and the development of the banking system because, once some enterprise owners were making more profit than they needed to plough back into their own companies, a mechanism was required to take their savings and lend them out to people who did want to invest. A structure was also needed to handle the profit-sharing part of those investment funds – the limited liability company.

I need hardly say that, just as the use of fossil fuels drove people out of manufacturing, it also drove them off the land. The use of fertilisers, tractors and sprays made each farm worker much more productive so less labour was required. In 1790, at least 90% of the US labour force worked in agriculture. In the year 2000, less than 1.4% did while still, producing enough to meet home and export demand. The average American farmer produced 12 times more an hour in 2000 than his predecessor did in 1950 2. Again, these changes were irresistible. Food prices fell by about 90% in relation to average incomes between 1920 and 1990. This meant that farmers had to increase their output by at least 1,000% for their income to keep up with the rest of society. As this could only be done by using fossil energy and industrial sector inputs, their output had to increase further to pay for them.

In May 2005, however, this period of rapid income growth for some and the displacement and poverty for others came to an end when world oil production ceased to increase. Indeed world energy supplies, and the supplies of other commodities, had been struggling to keep up with growing demand for two years previously and their prices had begun to rise. In dollar terms, the price of oil had risen to five or six times its 2003 level by 2008, while there was, on average, a tenfold rise in the price of other commodities over the same period. To give two examples, the price of copper quadrupled between 2003 and 2006, while the lead price peaked in 2007 at eight times its 2003 value.

These price rises caused the international financial crisis, as I explain in a later chapter. They were a signal that we should stop doing our Pompeii-style repairs and move away from the present system by devoting all our resources to building a civilisation on a different basis, just as we would in a military emergency.

This book is all about how such a new civilisation might be built, the resources that might be available for the transition and how our attitudes will have to change to bring it about. Many of the perversions listed at the top of this article need to be undone. Some we can do for ourselves and our families. Some can only be achieved on a community scale. In other cases, national and/or international action is required. Suggestions for action are given in the final chapter.

The task is immense and, on a global level, our version of Vesuvius will probably overwhelm us while we are doing it. Only those countries and communities that have made a determined break with the past will have a chance of surviving at a comfortable level. The rest of us will find that the systems on which our lives and livelihoods depend are overwhelmed and break down entirely, never to recover, and that we have no alternative support systems upon which to fall back. We cannot expect to get any clearer warnings of impending disaster than the people of Pompeii received. There are already financial fires around the economic cone. If we are to survive we need to move out quickly. Now.

But which way are we to go? Is there a map? It would be a poor book about an emergency situation which did not provide one. So, for the final chapter, my co-editor and I asked the contributors to suggest actions which readers could take or support at four levels – personal, community, national and global. In general. it is only at the national and global levels that fairly firm suggestions can be made and these are exactly those over which our readers have least influence. There is, in fact, a continuum. Influence diminishes the more people are involved. Readers can do a lot to change their own behaviour and probably have appreciable influence over their immediate families. They have less influence over what they could do, or try to get done, in their communities, and at a national and international level they have almost no influence at all.

There are two problems with this. One is that, at the personal level, circumstances vary so much that it is hard to find even broad general principles which apply to everyone. For example, should people spend their resources on cutting their household’s energy use or would it be better to invest the money involved in a community renewable energy project? And the answer is…. it all depends. There is no single right answer.

The other problem is that the key actions to ensure our survival can only be carried out at the national and international level. This is where the Pompeii analogy breaks down. The workmen who left their tools when the ash began to fall had somewhere they could run to with their families to be safe. People today don’t. Nowhere on the planet will be left undamaged by the environmental and economic catastrophes that will occur if the nations of the world continue on their present path. So it’s not just a question of some of us heeding the warning fires and running away, leaving the rest to their fate. We have to convince the majority of the world’s population to come along too.

We should therefore adopt collective solutions wherever possible rather than personal ones. This does not mean that individual acts are unimportant, of course. Indeed, they often ease the way for everyone else. The more individuals who decide to cycle to work, for example, the better the collective provision that is likely to be made for them. Similarly, the more people who fit triple-glazed windows, the easier and cheaper such windows are likely to become for others to obtain. However, it would make no sense for you to buy your own single-house wind turbine unless you cannot get a connection to the electricity grid. Its cost would be high in relation to its output and the energy and materials used in its construction would have been more productive had they been used to make a bigger machine. Nor would you be able to regard yourself as a worthy eco-pioneer because your solution could never be adopted by everyone else. Power needs are better met collectively; and it was three neighbouring families’ battle to develop a collective supply that led to the development of the Danish wind energy industry 3. The Transition Towns movement is potentially so important only because it has adopted a collective approach to energy, food and money supplies.

So Gill and I suggest that you should ask yourself three questions as you work your way through this book. The first is “What can I do myself?”, the second “What can I do with other people?” and the third is “What can’t I do anything about at all?” Each person will gather his or her individual set of answers because of their particular circumstances and we expect that they will find it interesting to compare them with those suggested by our authors in the final section.

Overall, we think you will find that this is an optimistic book because, although the world is facing huge problems, there are also a lot of potential solutions. Consequently, there’s a lot that can be done. We hope that, by the time you have finished reading, you have found there are some things which you, personally, are in a better position than anyone else to do or to help others do.

Endnotes

1. Quoted by Richard G. Wilkinson, Poverty and Progress, London: Methuen, 1973, p115.
2. Productivity Growth in U.S. Agriculture, by Keith O. Fuglie, James M. MacDonald, and Eldon Ball, September 2007, downloadable at http://www.ers.usda.gov/publications/EB9/eb9.pdf
3. See “How three families started a movement and created an industry” at http://www.feasta. org/documents/shortcircuit/index.html?sc5/windguilds.html or pages 203-7 in my book Short Circuit, Green Books, Totnes, 1996.